Talent Team

Wang Heling

王禾翎,副研究员,本科、博士毕业于清华大学,2015-2020年于美国西北大学黄永刚院士课题组从事博士后研究,入选2021年度海外优青。目前共发表文章50余篇。作为第一、共同第一、通讯作者发表的文章包括Nature (1)Nature Electronics (1)Nature Biomedical Engineering (1)Nature Communications (2)Science Advances (2)PNAS (3)JMPS (5)ACS Nano (2)Advanced Functional Materials (1)。研究方向为形状可编程技术,包括该技术的力学基础理论及在可编程电子器件与超表面等方面的应用。

Google Scholar: https://scholar.google.com/citations?user=9amp1lgAAAAJ

教育背景

2006.09-2010.07 清华大学 工程力学与航天航空工程学士

2010.09-2015.07 清华大学 力学博士

工作履历

2015.10-2020.10 美国西北大学,土木与环境工程系,博士后

2021.01-2022.10 浙江清华柔性电子技术研究院,X-center,助理研究员、副研究员

2022.10-至今 清华大学,柔性电子技术实验室,副研究员

学术兼职

担任下列期刊审稿人Science Advances, npj Flexible Electronics, PNAS, Journal of Applied Mechanics, Extreme Mechanics LettersProceedings of the Royal Society AMechanics of MaterialsScience China Technological Sciences, Mathematics, IEEE Journal on Flexible Electronics, Applied Science, Fluid Dynamics & Materials Processing, International Journal of Mechanical System Dynamics, Symmetry, Big Data and Cognitive Computing, Sensors, Electronics. 

研究领域

形状可编程技术

研究概况

光刻、打印等图案化技术能够在物理空间复刻复杂、精细的目标形状,使其具有优越的性能。相比于这些技术能够实现的静态结构,自然界和生物界中更加广泛存在的是形状随时间的连续变化过程,例如水中的波纹、昆虫飞行时精巧的形态,复杂时变形状是众多生物功能实现的关键。人造结构尚不能像打印机印制二维形状那样复刻时变形状,因而在时间尺度起关键作用的应用场景中,其功能和性能难以与生命体相比。 我们团队致力于发展形状可编程技术,从基础出发建立可重编程物质力学理论,技术实现方面发展驱动、感知、通讯、运算一体化高集成度的可编程物质和结构,基于形状可编程构建时变超材料/超表面等新形态物质,并探索在柔性变体飞行器/机器人等领域的应用。

奖励与荣誉

2021年 国家级青年人才计划

学术成果

至今已正式发表SCI论文50多篇。

作为第一、共同第一 (&) 及通讯作者 (*).

1.     Shin J&Wang HL&, Kwon K&, Ostojich D, Christiansen Z, Berkovich J, Park Y, Li ZW, Lee G, Nasif R, Chung TS, Su C-J, Lim J, Kubota H, Ikoma A, Lu Y-A, Lin DH, Xu S, Banks A, Chang J-K, Rogers JA*. Wireless, soft sensors of skin hydration with designs optimized for rapid, accurate diagnostics of dermatological health. Advanced Healthcare Materials, 2022.

2.     Yang QS&, Hu ZY&, Seo M-H, Xu YM, Yan Y, Hsu Y-H, Berkovich J, Lee K, Liu T-L, McDonald S, Nie HL, Oh H, Wu MZ, Kim J-T, Miller SA, Jia Y, Butun S, Bai WB, Guo HX, Choi J, Banks A, Ray WZ, Kozorovitskiy Y, Becker ML, Pet MA, MacEwan MR, Chang J-K, Wang HL*, Huang Y*, Rogers JA*. High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems. Nature Communications 13, p 6518, 2022.

3.     Ni XC&, Luan HW&, Kim J-T&, Rogge SI, Bai Y, Kwak JW, Liu SLZ, Yang DS, Li S, Li SP, Li ZW, Zhang YM, Wu CS, Ni XY*, Huang Y*, Wang HL*, Rogers JA*. Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks. Nature Communications 13, p. 5576, 2022.

4.     Bai Y&Wang HL&, *, Xue YG, Pan YX, Kim J-T, Ni XC, Liu T-L, Yang YY, Han MD, Huang Y*, Rogers JA*, Ni XY*. A dynamically reprogrammable metasurface with self-evolving shape morphing. Nature 609, pp.701–708, 2022.

5.     Wang HR, Wei C, Zhang Y, Ma YJ, Chen Y, Wang HL*, Feng X*. Tunable three-dimensional vibrational structures for concurrent determination of thin film modulus and density. Journal of Applied Mechanics-Transactions of the ASME 89, p. 031009, 2022.

6.     Zhao JZ&, Zhang F&, Guo XM, Huang Y*, Zhang YH*Wang HL*. Torsional deformation dominated buckling of serpentine structures to form three-dimensional architectures with ultra-low rigidity, Journal of the Mechanics and Physics of Solids 155, p.104568, 2021.

7.     Yuan XB, Won SM, Han MD, Yang YS, Rogers JA, Huang Y, Wang HL*. Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress, Journal of the Mechanics and Physics of Solids 151, p.104400, 2021.

8.     Zhao JZ&, Li WC&, Guo XM, Wang HL*, Rogers JA, Huang Y. Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus. MRS Bulletin 46, pp.107–114, 2021.

9.     Zhang F&, Li SP&, Shen ZM, Cheng X, Xue ZG, Zhang H, Song HL, Bai K, Yan DJ, Wang HL*, Zhang YH*, Huang Y*. Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices, Proceedings of the National Academy of Sciences of the United States of America 118, p.e2026414118, 2021.

10.  Zhao HB&, Kim Y&Wang HL&, Ning X&, Xu CK, Suh J, Han MD, Pagan-Diaz GJ, Lu W, Li HB, Bai WB, Aydin O, Park Y, Wang JJ, Yao Y, He YS, Saif TA, Huang Y*, Bashir R*, Rogers JA*. Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues, Proceedings of the National Academy of Sciences of the United States of America 118, p.e2100077118, 2021.

11.  Kwon K&Wang HL&, Jaeman L, Keum SC, Jang H, Yoo I, Wu D, Chen AJ, Ge GC, Lipschultz L, Kim JU, Kim J, Jeong H, Park Y, Su C-J, Ishida Y, Madhvapathy SR, Ikoma A, Kwak JW, Yang DS, Banks A, Xu S, Huang Y, Chang J-K*, Rogers JA*,. Wireless, soft electronics for rapid, multisensor measurements of hydration levels in healthy and diseased skin, Proceedings of the National Academy of Sciences of the United States of America 118, p.e2020398118, 2021.

12.  Madhvapathy SR&Wang HL&, Kong J, Zhang M, Lee JY, Par JB, Jang H, Xie ZQ, Gao JY, Avila R, Wei C, D’Angelo V, Zhu J, Chung HK, Coughlin S, Patel M, Winograd J, Banks A, Xu S*, Huang Y*, Rogers JA*. Reliable, low-cost, fully integrated hydration sensors for monitoring and diagnosis of inflammatory skin diseases in any environment. Science Advances 6, p. eabd7146, 2020. 

13.  Yan ZG, Wang BL, Wang KF, Zhao SW, Li SP, Huang Y, Wang HL*. Cellular substrate to facilitate global buckling of serpentine structures. Journal of Applied Mechanics- -Transactions of the ASME 87(2), 024501, 2020.

14.  Won SM&Wang HL&, Kim BH&, Lee HL&, Jang K, Kwon K, Han MD, Crawford KE, Li HB, Lee Y, Yuan XB, Kim SB, Oh YS, Jang WJ, Lee JY, Han S, Kim J, Wang XJ, Xie ZQ, Zhang YH, Huang Y, Rogers JA*Multimodal sensing with a three-dimensional piezoresistive structureACS Nano 13, pp.10972–10979, 2019.

15.  Han MD&Wang HL&, Yang YY, Liang CM, Bai WB, Yan Z, Li HB, Xue YG, Wang XL, Akar B, Zhao HB, Luan HW, Lim J, Kandela I, Ameer GA, Zhang YH*, Huang Y*, Rogers JA*. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nature Electronics 2, pp.26–35, 2019.

16.  Li SP, Han MD, Rogers JA, Zhang Y, Huang Y*Wang HL*. Mechanics of buckled serpentine structures formed via mechanics-guided, deterministic three-dimensional assembly. Journal of the Mechanics and Physics of Solids 125, pp.736–748, 2019.

17.  Nan K&Wang HL&, Ning X&, Miller KA, Wei C, Liu YP, Li HB, Xue YG, Xie ZQ, Luan HW, Zhang Y, Huang Y*, Rogers JA*, Braun PV*. Soft three-dimensional microscale vibratory platforms for characterization of nano-thin polymer films. ACS Nano 13, pp.449–457, 2018.

18.  Li HB, Wang X, Zhu F, Ning X, Wang HL*, Rogers JA, Zhang Y, Huang Y. Viscoelastic characteristics of mechanically assembled three-dimensional structures formed by compressive buckling. Journal of Applied Mechanics-Transactions of the ASME 85, p. 121002, 2018.

19.  Ning X&, Yu XG&Wang HL&, Sun RJ, Corman RE, Li HB, Lee CM, Xue YG, Chempakasseril A, Yao Y, Zhang ZQ, Luan HW, Wang ZZ, Xia W, Feng X, Ewoldt RH, Huang Y, Zhang YH*, Rogers JA*. Mechanically active materials in three-dimensional mesostructures. Science Advances 4(9), p.eaat8313, 2018.

20.  Wang HL, Ning X, Li HB, Luan HW, Xue YG, Yu XG, Fan ZC, Li LM, Rogers JA, Zhang YH*, Huang Y*. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling. Journal of the Mechanics and Physics of Solids 112, pp.187–208, 2018.

21.  Yu XG&Wang HL&, Ning X&,Sun RJ, Albadawi H, Salomao M, Silva AC, Yu Y, Tian LM, Koh A, Lee CM, Chempakasseril A, Tian P, Pharr M, Yuan JH, Huang Y*, Oklu R*, Rogers JA*. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nature Biomedical Engineering 2, pp.165–172, 2018. 

22.  Wang HL*, Jiang D-J, Zhang L-Y, Liu B*. How to realize volume conservation during finite plastic deformation. Journal of Applied Mechanics-Transactions of the ASME 84, p. 111009, 2017.

23.  Ning X&Wang HL&, Yu XG&, Soares JA, Yan Z, Nan KW, Velarde G, Xue YG, Sun RJ, Dong QY, Luan HW, Lee CM, Chempakasseril A, Han MD, Wang YQ, Li LM, Huang Y, Zhang YH*, Rogers JA*. 3D Tunable, Multiscale, and Multistable Vibrational Micro-Platforms Assembled by Compressive Buckling. Advanced Functional Materials 27, p.1605914, 2017.

24.  Lei H-J, Wang HL*, Liu B*, Wang C-A. Quantitative law of diffusion induced fracture. Acta Mechanica Sinica 32, pp. 611–632, 2016.

25.  Xiao S, Wang HL*, Liu B*, Hwang KC. The surface-forming energy release rate based fracture criterion for elastic–plastic crack propagation. Journal of the Mechanics and Physics of Solids 84, pp.336–357, 2016.

26.  Tong Q, Wang HL*, Xu R, Liu B*, Fang DN. Adaptive periodical representative volume element for simulating periodical postbuckling behavior. International Journal for Numerical Methods in Engineering 98, pp.445–468, 2014.

27.  Wang HL, Liu B*. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design. Journal of Applied Physics 115, p.114904, 2014.

28.  Wang HL, Liu B*, Fang DN. A nonlinear finite element method for magnetoelectric composite and the study on the influence of interfacial bonding. Mathematical Problems in Engineering, p. 197940, 2013.

作为参与作者

29.  Yang QS et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nature Electronics 5, 526–538, 2022.

30.  Wang HR et al. Mechanics design of conical spiral structure for flexible coilable antenna array. International Journal of Aerospace Engineering 2022, 2022.

31.  Meng YF et al. Direct-current generators based on conductive polymers for self-powered flexible devices. Scientific Reports11(1), 1–10, 2021.

32.  Li SP et al. Measurement of blood pressure via a skin-mounted, non-invasive pressure sensor. Journal of Applied Mechanics-Transactions of the ASME 88 (10), 101101, 2021.

33.  Luan HW et al. Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. Science Advances7(43), eabj3686, 2021.

34.  Park Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Science Advances 7(12), eabf9153, 2021.

35.  Li HB. et al. The nonlocal multi-directional vibration behaviors of buckled viscoelastic nanoribbons. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234(18), 3571–3583, 2020.

36.  Krishnan SR et al. Continuous, noninvasive wireless monitoring of flow of cerebrospinal fluid through shunts in patients with hydrocephalus. NPJ Digital Medicine 3(1), pp.1–11, 2020.

37.  Wang X, et al. Three-dimensional electronic scaffolds for monitoring and regulation of multifunctional hybrid tissues. Extreme Mechanics Letters 35, p.100634, 2020.

38.  Li HB, et al. The nonlocal frequency behavior of nanomechanical mass sensors based on the multi-directional vibrations of a buckled nanoribbon. Applied Mathematical Modelling 77, pp.1780–1796, 2020.

39.  Koo J, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances 6(35), eabb1093, 2020.

40.  Jia Y, et al. Intrinsic-to-extrinsic transition in fracture toughness through structural design: A lesson from nature. Extreme Mechanics Letters 37, 100685, 2020.

41.  Park JK et al. Remotely triggered assembly of 3d mesostructures through shape-memory effects. Advanced Materials 31(52), p.1905715, 2019.

42.  Park Y, et al. Transformable, freestanding 3d mesostructures based on transient materials and mechanical interlocking. Advanced Functional Materials 29(40), p.1903181, 2019.

43.  Zhao H, et al. Buckling and twisting of advanced materials into morphable 3D mesostructures. Proceedings of the National Academy of Sciences 116(27), pp.13239–13248, 2019.

44.  Li K, et al. A generic soft encapsulation strategy for stretchable electronics. Advanced Functional Materials 29(8), p.1806630, 2019.

45.  Luan H, et al. Design and fabrication of heterogeneous, deformable substrates for the mechanically guided 3D assembly. ACS Applied Materials & Interfaces 11(3), pp.3482–3492, 2018.

46.  Nan K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Science Advances 4(11), p. eaau5849, 2018.

47.  Krishnan SR, et al. Wireless, battery‐free epidermal electronics for continuous, quantitative, multimodal thermal characterization of skin. Small 14(47), p.1803192, 2018.

48.  Ma Y, et al. Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences 115(44), pp.11144–11149, 2018.

49.  Xiao S, et al. The surface-forming energy release rate versus the local energy release rate. Engineering Fracture Mechanics175, pp.86–100, 2017.

50.  Zhao JM, et al. Two objective and independent fracture parameters for interface cracks. Journal of Applied Mechanics-Transactions of the ASME 84(4), 041006, 2017.

51.  Chen HS, et al. Crack instability of ferroelectric solids under alternative electric loading. Journal of the Mechanics and Physics of Solids 81, pp.75–90, 2015.

52.  Wu D, et al. Dynamic buckling behavior of thin metal film lines from substrate. Journal of Micromechanics and Microengineering 24(10), p.105008, 2014.